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Natural water sources are often contaminated with heavy metal
ions generated by various industrial procedsésn particular, vast
amounts of highly toxic waste containing®Crare being generated
and discarded worldwide by industries associated with chrome
plating, metal finishing, pigment manufacturing, and leather tan-
ning3 Cr" is strongly oxidizing and carcinogertcAlthough

several sophisticated technigues are available to detect and quantify

Cr5+ 5 a selective, cost-effective sensor system with minimum
requirements for sample preparation is highly desirable. Alternative
approaches are rafeCré* undergoes reduction in solution in the
presence of H and low-valent metal centers such ag'FeMn?",

V3t or Og*.” For example, [Os(bpy)Cl, reacts with KCr,0 in
water under acidic conditions (pH 1) to afford C#*, as judged

by ESR spectroscopy. Monolayer chemistry is rapidly develdpity,
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Figure 1. (A) Absorption changes of the-based monolayer immersed in
an acidified MeCN solution (pH= 1) containing 0.5 ppm Cr at 4, 6, 10,

16, and 45 min, respectively. The inset shows the absorption changes at
=516 @) R? = 0.990,4 = 692 nm @) R = 0.997,4 = 317 nm @) R?

= 0.979, andl = 293 nm () R? = 0.850. (B) Absorption changes in
oxidation % afte a 1 min exposure of th&-based monolayer to aqueous

and such, well-designed interfaces have been used to detect variousolutions containing 0, 1, 5, 10, 25, and 50 pprfi'Gat pH= 1. The black

analyte$"1°However, the design of a suitable platform for detecting
specific metal ions in a matrix remains a challenging faskWe
present here the selective optical detection and parts per million
level quantification of Ct" in acidic HLO and MeCN using known
1-based monolayers on float glass substr&tébe highly stable

sensor system can be readily regenerated by washing with water

(neutral pH), and it exhibits excellent selectivity towardCr

(MeOQ),Si

1 (X =1, PFy)

Trace amounts of @t in aqueous or organic solutions can be
detected in situ by monitoring the optical properties of tHeased
monolayer by UV/vis spectroscopy in the transmission mode<{260
800 nm). KCr,0O; has been used as the 8Crsource in all
experiments. For example, immersing-hased monolayer on glass
(0.8 x 2.5 x 0.1 cm) in an acidified MeCN solution containing
0.5 ppm Cf" results in a significant decrease of the absorption
band ati = 293 nm, both singlet and triplet states of metal-to-
ligand charge-transfer (MLCT) bands/at 516 and 692 nm, and
a concurrent increase of the ligand-to-metal charge-transfer (LMCT)
band att = 317 nm (Figure 1A). Saturation of the sensor occurred
under these reaction conditions after 45 min (Figure 1A, inset).
The 1-based monolayer is stable in,® at pH= 1 for at least
several hours in the absence of%Cras judged by UVl/vis
spectroscopy.

Remarkably, the amount of €rcan also be accurately quantified
within only 1 min of exposure time. A representative calibration
curve of thel-based monolayer with a series of aqueou&"Cr
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line represents a linear fiRg = 0.996). The red dots show the results of a
blind test.
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Figure 2. (A) Absorption spectra of a typical switching experiment where
the 1-based monolayer is oxidized for 1 min with an acidified MeCN
solution (pH< 1) containing 5 ppm Cr and is subsequently reduced with
H,O within 3 min. (B) Absorption of thel-based monolayer &t = 516
nm after immersion for 1 min in an aqueous 100 pprfi*Gt different pH
values.

containing solutions (60 ppm; pH= 1) is shown in Figure 1B.
The good linear correlation and the system stability allow reliable
and accurate quantification of €r For instance, a blind test showed
that, even after several weeks in air, the calibrdtdézhsed sensor
can be used to determine the amount df*Grithin 10% accuracy
(Figure 1B, solid circle). The detection range inHand MeCN
is 1-100 and 0.5-100 ppm, respectively. Reduction of the30Os
system by water completely restores the MLCT bands &at516
and 692 nm to their original values (Figure%)%12

The surface-solution redox chemistry is dependent on the pH
and shows good reversibility for at least 10 redox cycles, as shown
in Figure 2A. Ex situ UV/vis follow-up experiments demonstrate
that the system only responds to the analyte at a<pBifor a 1
min exposure time (Figure 2B). The highest oxidation rate is
observed at pH= 0.3. Interestingly, reduction of the sensor with
H,0 is pH-dependent, as well. The maximum reduction rate was
observed at pH= 7.5, whereas at pk 1, hardly any reaction is

10.1021/ja7110527 CCC: $40.75 © 2008 American Chemical Society
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Figure 3. Relative oxidation change of tHebased monolayer dt= 516
nm, after immersion in agueous matrices containing 504 M of each

of the following metal salts, with (row 1, red) and without (row 2, blue)
100 ppm Cf*: (a) HgCh, ZnClh, CuChk, CoCh, MnCly, and NiCb; (b)
MgCl,, BaCh, and CaGJ; (c) KCI, NaCl, CsCl, and LiCl; (d) LaG| Al-
(NOg)3, and CdS@ (e) NaNG, NaSOy, N&SO;, KH2POy, and KBr; (f)
Pb(NGs), and NaNQ; (g) FeCk; (h) FeCk after sample treatment with a
strong base to selectively remove3Fe

Oxidation %

Figure 4. Optical response, expressed in oxidation %, of tHeased
monolayer at. = 516 nm after immersion for 1 min in pond water (blue)
and sand-extracted water (red) under acidic conditions<pt). Entries 1

and 2 contain pond water with and without acid added to the sample. Entries
3 and 4 contain 5 and 10 ppm &y respectively, with the same amount of
acid, except foa 2 min response time, whereas entry 5 contains 100 ppm
Cré*. Entries 6 and 7 contain water from the sand extraction, with and
without acid added to the sample. Entries 8 and 9 were taken from the
sand+ Cr5" extraction, in which the latter was acidified (pH 1).

z 3 4 5 6 7 8 9

observed. The monolayer setup becomes unstable at higher pH

values, which is common for siloxane-based monolaifers.
The selectivity of thel-based monolayer toward €r was

demonstrated using a series of aqueous matrices containing various ®)

metal ions (e.g., alkali, alkaline earth, transition, etc.) or anions
commonly found in groundwater (Figure B)Only samples
containing C¥" induced significant optical changedA > 60%)
after a 1 min exposure time.

We recently reported the optical sensing ofF& H,O and
MeCN by thel-based monolayer (under neutral conditiotidn
the absence of H the 1-based sensor does not respond t&6 Cr
(Figure 2B, inset). Apparently, this dual sensor system is capable
of detecting a specific metal ion by varying the pH. Time-dependent
measurement of the oxidation of thébased monolayer by aqueous
solutions containing 80 ppm Feor C¥* showed that the optical

response of the sensor toward the latter ion is at least 6-fold greater

within 1 min of exposure time (see Supporting Information).
Moreover, Fé&" can selectively be removed from the medium by
treatment with strong base prior to analysis of th&"@ontent by
the 1-based monolayer (Figure 3, entry h).6Ciis stable under
basic condition§¢

The formation of device quality sensors requires the ability to
detect analytes not only under controlled laboratory conditions but
also under environmental conditions. Indeed,tmased monolayer
has also been used to detec#0n environmental samples. Water
from a fishing pond and playground sand samples were collected
and analyzed with and without the addition of parts per million
levels of CF*. The CF* was extracted from the sand with water.
All water samples were acidified to p 1. Only contaminated
samples gave positive responses (Figure 4).

In summary, we have shown that thdased monolayer is able
to detect and quantify traces of®Ciin H,O and MeCN under acidic

conditions. The measurements are relatively fast (1 min) and can

be carried out under environmental conditions without any sophis-
ticated sample treatment. The redox processes with the surface-
confined complext are fully reversible and can be monitored in
and ex situ using standard UV/vis spectroscopy (2800 nm).

The system is stable up to 20Q in air for 48 h%.¢cThe combined
physicochemical properties and device performance oftbhased
monolayer, including robustness, regeneration, response time,
stability, selectivity, as well as the low detection limits, may make
this system an excellent alternative for detecting and quantifying
Crét,
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